Transgenic overexpression of macrophage matrix metalloproteinase-9 exacerbates age-related cardiac hypertrophy, vessel rarefaction, inflammation, and fibrosis.

نویسندگان

  • Hiroe Toba
  • Presley L Cannon
  • Andriy Yabluchanskiy
  • Rugmani Padmanabhan Iyer
  • Jeanine D'Armiento
  • Merry L Lindsey
چکیده

Advancing age is an independent risk factor for cardiovascular disease. Matrix metalloproteinase-9 (MMP-9) is secreted by macrophages and robustly increases in the left ventricle (LV) with age. The present study investigated the effect of MMP-9 overexpression in macrophages on cardiac aging. We compared 16- to 21-mo-old C57BL/6J wild-type (WT) and transgenic (TG) male and female mice (n = 15-20/group). MMP-9 overexpression amplified the hypertrophic response to aging, as evidenced by increased LV wall thickness and myocyte cross-sectional areas (P < 0.05 for both). MMP-9 overexpression reduced LV expression of the angiogenesis-related factors ICAM-1, integrins α3 and β3, platelet/endothelial cell adhesion molecule-1, thrombospondin-1, tenascin-c, and versican (all P < 0.05). Concomitantly, the number of vessels in the TG was lower than WT LV (P < 0.05). This led to a mismatch in the muscle-to-vessel ratio and resulted in increased cardiac inflammation. Out of 84 inflammatory genes analyzed, 16 genes increased in the TG compared with WT (all P < 0.05). Of the elevated genes, 14 were proinflammatory genes. The increase in cardiac inflammation resulted in greater accumulation of interstitial collagen in TG (P < 0.05). Fractional shortening was similar between groups, indicating that global cardiac function was still preserved at this age. In conclusion, overexpression of MMP-9 in macrophages resulted in exacerbated cardiac hypertrophy in the setting of vessel rarefaction, which resulted in enhanced inflammation and fibrosis to augment the cardiac-aging phenotype. Our results provide evidence that macrophage-derived MMP-9 may be a therapeutic target in elderly subjects.NEW & NOTEWORTHY The present study was the first to use mice with transgenic overexpression of matrix metalloproteinase-9 (MMP-9) in macrophages to examine the effects of macrophage-derived MMP-9 on cardiac aging. We found that an elevation in macrophage-derived MMP-9 induced a greater age-dependent cardiac hypertrophy and vessel rarefaction phenotype, which enhanced cardiac inflammation and fibrosis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Role of endothelial nitric oxide synthase and collagen metabolism in right ventricular remodeling due to pulmonary hypertension.

BACKGROUND Pulmonary hypertension (PH) causes elevated right ventricular (RV) systolic pressure, RV remodeling and finally RV failure to death. However, the mechanisms of RV remodeling in PH remain to be fully elucidated. METHODS AND RESULTS RV autopsy samples from 6 PH patients with RV failure against 3 age- and sex-matched controls were first examined. Next, RV remodeling in 2 mouse models ...

متن کامل

Thrombospondin-1 induction in the diabetic myocardium stabilizes the cardiac matrix in addition to promoting vascular rarefaction through angiopoietin-2 upregulation.

RATIONALE Diabetes mellitus is associated with cardiac fibrosis. Matricellular proteins are induced in fibrotic conditions and modulate fibrogenic and angiogenic responses by regulating growth factor signaling. OBJECTIVE Our aim was to test the hypothesis that the prototypical matricellular protein thrombospondin (TSP)-1, a potent angiostatic molecule and crucial activator of transforming gro...

متن کامل

Peroxisome Proliferator-Activated Receptor –Independent Actions of Fenofibrate Exacerbates Left Ventricular Dilation and Fibrosis in Chronic Pressure Overload

Progressive cardiac remodeling is characterized by subsequent chamber hypertrophy, enlargement, and pump dysfunction. It is also associated with increased cardiac fibrosis and matrix turnover. Interestingly, peroxisome proliferator-activated receptor (PPAR) activators reduce cardiac hypertrophy, inflammation, and fibrosis. Little is known about the role of fenofibrates in mediating PPAR -indepe...

متن کامل

Peroxisome proliferator-activated receptor alpha-independent actions of fenofibrate exacerbates left ventricular dilation and fibrosis in chronic pressure overload.

Progressive cardiac remodeling is characterized by subsequent chamber hypertrophy, enlargement, and pump dysfunction. It is also associated with increased cardiac fibrosis and matrix turnover. Interestingly, peroxisome proliferator-activated receptor (PPAR) alpha activators reduce cardiac hypertrophy, inflammation, and fibrosis. Little is known about the role of fenofibrates in mediating PPARal...

متن کامل

Effect of Eight Weeks of Aerobic Training on Some Myocardial Fibrosis Indices in Cardiac Muscle of Diabetic Rats

Background. Myocardial fibrosis is identified as a major side effect of Diabetes Mellitus on the heart. Some bio-markers including the ratio of matrix metalloproteinases and their inhibitors in collagen synthesis and collagen degradation are clinically useful in the diagnosis and identification of myocardial fibrosis. In addition, regular aerobic exercise training is one of the major and non-ph...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Heart and circulatory physiology

دوره 312 3  شماره 

صفحات  -

تاریخ انتشار 2017